> import Prelude hiding ((^))

I've been pondering a type that's so mind-bogglingly weird that I can no longer think about it without frying my neurons. So instead I'll just dump the contents of my brain here so you can fry your neurons too.

Here's an interesting type to warm up with. In Haskell:

> data X = Tree [X]

At first look it seems not be well-founded in the sense that a value of type X is a list of X's and we haven't yet defined what X's are. But we don't need an X to make an empty list of X's. So we can build elements inductively starting with Tree []. If you think of Tree [] as being a leaf, you can see why I called this type Tree (though they are trees whose limbs can have infinite sequences of children).

Even without the empty set forming a 'foundation' we can still build circular elements like

> x = Tree [x,x]

Now lists are ordered and can have repeated elements. What about if we eliminate these two properties. The way to do that would be with a set type. So how do we represent sets in Haskell. Well certainly not with Haskell's Data.Set because that only represents finite sets. On approach to supporting infinite sets is to identify a set with a predicate for telling whether an element is a member of a set. In other words, the type X→Bool makes a tolerably good set of X's.

So now we're ready for an interesting type:

> data U = U { f :: U -> Bool }

(BTW U stands for universe).

The first thing to think about is what this might mean mathematically. Well it looks like a solution to the equation X=2

^{X}, in other words, a set that equals its own power set. We know that in set theory this gives rise to Russell's paradox. One way to embed recursive types into set theory is to tweak set theory, for example by using non-well-founded set theory. But Russell's paradox is so bad that it breaks just about any attempt at devising a set theory where a set can equal its power set.

And yet we can build this type in Haskell. How come? The explanation is simple, Russell's paradox tells us that there must be some elements whose evaluation doesn't terminate. In fact, we can replay Russell's paradox directly in Haskell. But before that we need some definitions.

Firstly, are we sure we can even construct an element of U? In order to define an element of U we need to define a boolean predicate on U but we can't even compare two elements of U for equality. But we can define the 'empty' element phi, along with a membership test:

> phi = U $ const False

> x `e` y = f y x

Unlike conventional set theory, we can define negation of elements. We can also define union and intersection:

> neg a = U $ \x -> not (x `e` a)

> a \/ b = U $ \x -> x `e` a || x `e` b

> a /\ b = U $ \x -> x `e` a && x `e` b

We're ready for the Russell paradox. Define the 'set' (I give in, let's informally call these things sets) of all sets that don't contain themselves.

> nonSelfContaining = U $ \a -> not (a `e` a)

Now try to compute nonSelfContaining `e` nonSelfContaining. It doesn't terminate. It's not just a matter of having implemented it badly, it can't possibly terminate as there is no answer that could make sense. So if you're designing a language that's intended to be total, you'd better rule out types like U.

So we now have two elements of U, phi and neg phi. Can we make any more? Well here's one way:

> c a = U $ \x -> a `e` x

Intuitively, c a is the set of all sets that contain a. But there are two potential problems that come to mind with this. One is, we've only made two sets so far, so "the set of all sets that contain a" might not be interesting. And secondly, can we be sure c a is distinct from a?

The first issue is easily dismissed. neg phi is obviously in c phi, but phi isn't. So we can distinguish phi and c phi. c phi is also different from neg phi (check to see if phi is an element of each). In fact, define functional power by

> f ^ 0 = \x -> x

> f ^ n = \x -> (f^(n-1)) (f x)

and it can be shown that c^m phi is distinct from c^n phi for m≠n. (Hint: Try checking to see if c^m (neg phi) is an element of c^n phi for various m and n.) So we have constructed an infinite number of elements of U.

But, we know that we can write code for elements of U that doesn't terminate. Why not restrict ourselves to just the computable elements of U? But there's a catch. How do we define a computable element of U when elements of U are functions. One approach is this: define x to be computable if y `e` x is computable for all y. But that won't do because it won't terminate if y isn't computable. So how about defining x to be computable if y `e` x is computable for all computable y. But that's circular, and not in a nice inductive way. U is so perverse that just attempting to define computability for it gives a circular definition. But that's not necessarily a problem. Define a 'universe' to be a set, C, of computations of type U such that C = the set of x such that y`e` x terminates for all y in C. The question now is this: is there a unique set C satisfying this 'equation'. We can rule out the empty set as phi must be in any such C. There's also another thing we can prove. If we have two such sets, C and C', we can prove that the intersection of C and C' is a universe. So we can take the intersection of all universes to form the smallest universe. So we can define a something in U to be computable if it is in this smallest set.

So here's my first open question: Are there larger 'universes' than the smallest one, or is it unique? It's not hard to see that a universe is closed under (non-recursive applications of) negation, finite union, finite intersection and the function c above. My second open question: What other computable elements are there?

Time to stop this and start cooking dinner.